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Parallel Imaging Reconstruction Using Automatic

Regularization

Fa-Hsuan Lin,'" Kenneth K. Kwong,?® John W. Belliveau,?® and Lawrence L. Wald??

Increased spatiotemporal resolution in MRI can be achieved by
the use of parallel acquisition strategies, which simultaneously
sample reduced k-space data using the information from mul-
tiple receivers to reconstruct full-FOV images. The price for the
increased spatiotemporal resolution in parallel MRI is the deg-
radation of the signal-to-noise ratio (SNR) in the final recon-
structed images. Part of the SNR reduction results when the
spatially correlated nature of the information from the muitiple
receivers destabilizes the matrix inversion used in the recon-
struction of the full-FOV image. In this work, a reconstruction
algorithm based on Tikhonov regularization is presented that
reduces the SNR loss due to geometric correlations in the
spatial information from the array coil elements. Reference
scans are utilized as a priori information about the final recon-
structed image to provide regularized estimates for the recon-
struction using the L-curve technique. This automatic regular-
ization method reduces the average g-factors in phantom im-
ages from a two-channel array from 1.47 to 0.80 in twofold
sensitivity encoding (SENSE) acceleration. In vivo anatomical
images from an eight-channel system show an averaged g-
factor reduction of 1.22 to 0.84 in 2.67-fold acceleration.
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The use of multiple receivers in MRI can be exploited to
enhance spatiotemporal resolution by reducing the num-
ber of k-space acquisitions. The folded image that would
result from conventional reconstruction is avoided by the
use of spatial information from multiple coils. Several
methods for using this information have been proposed,
including the k-space-based simultaneous acquisition of
spatial harmonics (SMASH) method (1,2) and the image
domain-based sensitivity encoding (SENSE) approach (3).
By reducing sampling time, these parallel MRI techniques
can be used to reduce image distortion in echo-planar
imaging (EPI) (4) or diminish acoustic noise by lowering
gradient switching rates (5). However, these advantages
come at the cost of a reduced signal-to-noise ratio (SNR).
The reduction in SNR stems from two factors: the reduced
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number of data samples, and the instability in reconstruc-
tion due to correlations in the spatial information as de-
termined by the geometrical arrangement of the array coil.
The first is the inevitable result of reducing the number of
samples. The second might be affected by optimizing coil
geometry (6,7) or improving the stability of the reconstruc-
tion algorithm. The increased noise originating from cor-
related spatial information from the array elements can be
estimated based on knowledge of the array geometry, and
is quantified by the geometric factor (g-factor) map (3).

The reconstruction of parallel MRI can be formulated as
linear equations (8) that must be inverted to obtain an
unfolded image from the reduced k-space data set. If the
matrix is well conditioned, the inversion can be achieved
with minimal amplification of noise. While the encoding
matrix can still be inverted even if it is nearly singular, in
this ill-conditioned case, small noise perturbations in the
measured data (aliased image) can produce large varia-
tions in the full-FOV reconstruction. This effect causes
noise amplifications in regions of the image where the
encoding matrix is ill-conditioned.

The restoration of full-FOV images requires the use of
additional information, such as the coil sensitivity maps
provided by a low-spatial-resolution, full-FOV reference
scan. In addition to being required to determine the coil
sensitivity profile that becomes part of the linear equations
to be inverted, the reference scan may also provide a priori
information that is useful for regularizing the inversion
process. In this work, we present a framework for mitigat-
ing the noise amplification in SENSE reconstruction by
utilizing Tikhonov regularization (9). The advantage of
regularized parallel MRI reconstructions was previously
reported in a study on cardiac imaging in which an em-
pirical formula of a fixed fraction (0.05) of the first eigen-
value was used (2). Similarly, regularized SENSE recon-
struction using an empirical regularization parameter was
described by King (10). The benefits of incorporating prior
information to reduce the noise level of reconstructed
images have also been demonstrated (10-12). Further-
more, it has been reported that regularization can poten-
tially be used to unfold aliased images from an underde-
termined system (i.e., the aliased pixel number exceeds
the RF channels in the array) (13). Nevertheless, no sys-
tematic approach has been described to provide a regular-
ization parameter for SENSE image reconstruction, and
spatial distribution of noise arising from unfolding SENSE
images has not been well characterized when regulariza-
tion is employed. In this study, we employed a full-FOV
reference scan and the L-curve algorithm (14) to determine
the optimum regularization parameter. In addition, we
demonstrated the effect of regularization on the noise of
the unfolded images by g-factor maps using both phantom
and in vivo experimental data.
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THEORY

The formation of aliased images from multiple receivers in
parallel MRI can be formulated as a linear operation to
“fold” the full-FOV spin density images (8).

7= Ax [1]

Here y is the vector formed from the pixel intensities
recorded by each receiver (folded image), and X is the
vector formed from the full-FOV image. The encoding
matrix A consists of the product of the aliasing operation
due to subsampling of the k-space data and coil-specific
sensitivity modulation over the image. The goal of the
image reconstruction is to solve for x given our knowledge
of A, which is derived from understanding the folding
process and an estimate of the coil sensitivity maps. While
Eq. [1] is expressed in the image domain SENSE approach
(3), similar linear relationships are formed in the k-space-
based SMASH (1,2) method. Furthermore, the same basic
formalism is used in either the in vivo sensitivity method
(2), or conventional SENSE/SMASH methods requiring
coil sensitivity estimation. In general, Eq. [1] is an overde-
termined linear system, i.e., the number of array coils,
which is the row dimension of y, exceeds the number of
the pixels that fold into the measured pixel, the row di-
mension of x.

To solve for x (the full-FOV image), the overdetermined
matrix is inverted using a least-squares estimation (3):

x= Uy
— (AH\I,71A)71AH11,715}’ [2]

where the superscript H denotes the transposed complex
conjugate, and ¥ is the receiver noise covariance (3).
When V is positive semi-definite, the eigen decomposition
of the receiver noise covariance leads to the unfolding
matrix, U, using the whitened aliasing operator A and the
whitened observation .

= VAVH
A= AT""VHA
}75 A—l/ZVHy
x=Uy
= (A"A) A"y, (3]

The whitening of the aliasing operator will be used in
the regularization formulation introduced in the next sec-
tion. The whitening incorporates the receiver noise covari-
ance matrix, implicitly allowing optimal SNR reconstruc-
tion within the regularization formulation. The noise sen-
sitivity of the parallel imaging reconstruction is thus
quantified by the amplification of the noise power due to the
geometry of the array. This g-factor is thus written as (3)

\/X"z));mHsI imaging
8o = / ull
VR X,

= [(A"A) ", (A"A),, . [4]

The subscript p indicates the voxels to be “unfolded” in
the full-FOV image, and X denotes the covariance of the
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reconstruction image vector k. Here R denotes the factor by
which the number of samples is reduced (the acceleration
rate).

Tikhonov Regularization

Tikhonov regularization (9) provides a framework for sta-
bilizing the solution of ill-conditioned linear equations.
The solution of Eq. [1] using Tikhonov regularization can
be written as

X' = argmin {|AX — 7|, + ML - X°)[.}. (5]

Here \? is the regularization parameter, L is a positive
semi-definite linear transformation, X° denotes the prior
information about the solution X, and | |®| |, represents
the L-2 norm. Thus the second term in Eq. [5], defined as
the prior error, is the deviation of the solution image from
the prior knowledge. The first term, defined as the model
error, represents the deviation of the observed aliased im-
age from the model observation. The model observation is
a folded version of the solution image. The regularization
parameter determines the relative weights with which these
two estimates of error combine to form a cost function.

Consider the extreme case when \* is zero and we at-
tempt to minimize only the first term. This is equivalent to
solving the original equation, y = AX, without condition-
ing (conventional SENSE reconstruction). At the other ex-
treme, when \? is large, the solution will be a copy of the
prior information x°. Thus, the regularization parameter \*
quantifies the trade-off between the error from prior
knowledge not describing the current image, and the error
from noise amplification from the unconditioned matrix
inversion. An appropriate choice of A? (regularization) de-
creases the otherwise complete dependency on the whit-
ened model (A) and the whitened observation (¥) to con-
strain the solution to within a reasonable “distance” from
the prior knowledge (x°). Thus the regularization in-
creases the influence of prior-knowledge, full-FOV image
information during the unfolding of the aliased images.

Given the regularization parameter \?, and letting L be
an identity matrix, the solution of Eq. [4] is written as (14)

n ~H~
u.
%= (f, Y- ﬁ)i,’-’&“) 7,
._1 Sjj
-
fe s} _[ 1 S>>\ (6]
TSN SHN?, SN

Here ﬁj, ﬁj, and s; are the left singula{ vectors, right
singular vectors, and singular values of A, respectively,
generated by singular value decomposition (SVD), with
singular values and singular vectors indexed by j. This
leads to the ollowing matrix presentations:

= VI Uy + VO VIR
VAR(X") = VI2VH

i Sii
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Using regularization and Eq. [4], the ratio of the noise
levels between the regularized parallel MRI reconstruction
and the original full-FOV image normalized by the factor
of acceleration gives the local geometry factor for noise
amplification:

Gop = \NL(VT?V, [(VS V], (8]

Inside the square root of Eq. [8], the first square bracket
term denotes the variance of the unfolding using regular-
ization from Eq. [7], and the second square bracket term
denotes the variance of the full-FOV reference image.

Estimating the Optimal Regularization Parameter Using the
L-Curve

To determine the appropriate regularization parameter \?,
we utilized the L-curve approach (14). Qualitatively, we
expect that as regularization increases, more dependency
on the prior information leads to a smaller discrepancy
between the prior information and the solution, at the cost
of a larger difference between model prediction and obser-
vation. Similarly, a small regularization parameter de-
creases the difference between model prediction and ob-
servation at the cost of a larger discrepancy between the
prior information and the solution. The L-2 norm is used
to quantify the difference between these vectors. The
model error and prior error can then be calculated (14)
using:

p=y— Az, = D, (1 - fHul'p)?
j=1

n Hs 2
n=lx-2- 3 (o -x))

1 Sjj

where %} is the jth element of prior X°.

Plotting model error vs. prior error for a range of \*
shows the available trade-offs between the two types of
error. A representation of this plot, termed the L-curve, is
shown in Fig. 1. The optimal regularization parameter is
defined as that which strives to minimize and balance the
two error terms. This occurs at the elbow of the L-curve.
Mathematically, this is where its curvature is minimal.
The analytic formula (14) for the L-curve’s curvature en-
ables a computationally efficient search to be performed
for the A\* at the point of minimal curvature.

MATERIALS AND METHODS

Phantom studies were performed on a 1.5T clinical MRI
scanner (Siemens Medical Solutions, South Iselin, NJ) us-
ing an in-house-made, two-element array. Each element
was a circular surface coil (5.5-cm diameter) tuned to the
Larmor frequency of the scanner. The two element coils
had a 1.5-cm overlap to minimize inductive coupling. The
array was mounted on curved plastic with a curvature
radius of 20 cm to conform the phantom and subjects. A
2D gradient-echo sequence was used to image the homog-
enous, spherical (11.6-cm diameter) saline phantom. The
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FIG. 1. An L-curve illustrates the two costs during reconstruction of
the aliased images from an array. Using distinct regularization, the
reconstruction biases toward minimizing either the prior error or the
model error. A trade-off between these two error metrics is the use
of regularization at the “corner” of the L-curve.

imaging parameters were TR = 100 ms, TE = 10 ms, flip
angle = 10°, slice thickness = 3 mm, FOV = 120 mm X
120 mm, and image matrix = 256 X 256. The same scan
was repeated with the number of phase-encode lines re-
duced to 75%, 62.5%, and 50%.

The in vivo anatomical images were acquired using a 3T
scanner (Siemens Medical Solutions) with an eight-chan-
nel linear phased-array coil wrapped around the whole
brain circumferentially. Each circular surface coil element
was 9 cm in diameter and tuned to the proton Larmor
frequency at 3T. Appropriate overlapping between neigh-
boring coils minimized mutual inductance between coil
elements. We used a fast low-angle shot (FLASH) 3D se-
quence to acquire in vivo brain images from a healthy
subject, after approval from the Institutional Review Board
and informed consent from the subject were obtained. The
parameters of the FLASH sequence were TR = 500 ms,
TE = 3.9 ms, flip angle = 20°, slice thickness = 3 mm with
a 1.5-mm gap, 48 slices, FOV = 210 mm X 210 mm, and
image matrix = 256 X 256. The same scan was repeated
with the number of phase-encode lines reduced to 50%,
37.5%, and 25%.

We adopted in vivo sensitivity reconstructions for both
the phantom and in vivo experiments to avoid potential
increases in the g-factor due to misestimation of the coil
sensitivity maps (2). Also, to illustrate the validity of uti-
lizing prior information while avoiding the complications
of different spatial resolutions, we employed identical spa-
tial resolutions for both reference scans and accelerated
acquisitions. While the use of a full-resolution reference
scan defeats the purpose of the SENSE acceleration for
standard radiographic imaging, it is useful for time-series
imaging applications, such as fMRI. However, to demon-
strate the effect of regularization when only a low-resolu-
tion full-FOV reference scan is available, we also apply the
regularization method to a reconstruction using lower-
resolution full-FOV reference images. For this demonstra-
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tion, we downsampled the full-FOV reference images by
two- or fourfold (from a 256 X 256 matrix to 128 X 128 and
64 X 64 matrices) and employed the lower-resolution ref-
erence images as priors in 2.00- and 2.67-fold accelerated
acquisitions.

The use of regularization allows a smooth trade-off be-
tween replication of the reference information and noise
introduced in the poorly-conditioned inversion that may
result from reliance on the measured data alone. There-
fore, it is important to have some indication that there is
not an overreliance on the reference data (i.e., that the
regularization parameter is not extremely high). For the
fMRI application, the time-series data should not simply
replicate the reference data, in which case subtle temporal
changes in the time-series would not be detected (func-
tional CNR would be lowered).

To test the degree to which regularization might reduce
the CNR in an fMRI study, we simulated a 2.00-fold-accel-
erated SENSE fMRI scan consisting of 50 time points for
the baseline (resting) and active conditions. An image from
the eight-channel array was used as a template to construct
the 100-image time series. Model activation was added to
half of the images by increasing the pixel value by 10% in
a 4-pixel region of interest (ROI) in the occipital lobe of the
left hemisphere. White Gaussian noise of zero mean was
added to the time-series, and the images were recon-
structed with and without the regularization method. A
two-sample t-test between the active and baseline condi-
tions was used to measure fMRI sensitivity.

In practice, we calculate the L-curve by iteratively cal-
culating the two terms in the cost function (Eq. [9]) after
performing SVD on the whitened encoding matrix. The
search range of the regularization parameter was restricted
to arange between the largest and smallest singular values.
The search was done in a 200-sample geometric sequence,
each term of which is given by a multiple of the previous
one. The curvature associated with each sample was com-
puted. Subsequently, the minimal curvature was found
within this search range. Image reconstruction, matrix reg-
ularization, and computation of the g-factor maps were
performed on a Pentium-III 1GH, dual processor Linux
system with code written in MATLAB (Mathworks,
Natick, MA).

RESULTS

Figure 2 shows the reconstructed full-FOV phantom im-
ages and the associated g-factor maps from the 1.5T scan-
ner using the spherical saline phantom and two-element
surface coil array employing 1.33-fold (192 lines), 1.60-
fold (160 lines), and 2.00-fold (128 lines) accelerations.
Although the overall image SNR in this acquisition was
relatively high near the surface coils, SENSE reconstruc-
tion noise arising from matrix inversion was significantly
improved by the regularization step for all of the acceler-
ated acquisitions (1.33-fold, 1.60-fold, and 2.00-fold accel-
erations). The effect of the regularization step was greatest
for the SENSE reconstruction at 2.00-fold acceleration.
The largest reductions in noise were observed near the
coil. The bottom panel of Fig. 2 shows the g-factor maps for
regularized and nonregularized reconstructions. The g-fac-
tor maps are all scaled by the same factor to facilitate
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comparison. The regularized reconstructions allow g-fac-
tors of <1, since prior knowledge is used. In contrast, the
conventional nonregularized reconstructions always have
a minimum g-factor of 1. Table 1 summarizes the g-factor
average, standard deviation, and median in 1.33-fold, 1.60-
fold, and 2.00-fold accelerations. For the 1.33-fold accel-
eration case, the regularization provided an average 87%
reduction in the added reconstruction noise. For the 2.00-
fold acceleration case, the regularization provided an av-
erage 1.84-fold reduction.

Figure 3 shows the regularized and nonregularized recon-
structed in vivo images and g-factor maps from the 3T scan-
ner using the eight-channel array coil with 2.67- and 2.00-
fold accelerations. The g-factor maps showed noticeable lo-
cal decreases in the added noise levels of the regularized
reconstructed images. Similarly, regularization helped re-
duce noise in the temporal lobe in 2.67-fold acceleration
(middle panel). In 4.00-fold acceleration, regularized recon-
struction demonstrated decreased noise in the deep temporal
lobe inside the insular cortex. Table 2 summarizes the g-
factor average, standard deviation, and median in the recon-
structed anatomical images. As expected, more accelerated
acquisitions resulted in higher g-factors in both regularized
and nonregularized reconstructions. In 2.00-fold accelera-
tion, the g-factor average was suppressed from 1.07 to 0.72 by
regularization (49% reduction). In 4.00-fold acceleration, the
g-factor-associated noise reduction by regularization was
31% (nonregularized: 2.04, regularized: 1.52). Here, the SNR
advantages resulting from regularized reconstruction can be
appreciated in the temporal lobe of the anatomical images
(Fig. 4). In 2.00-fold acceleration, a banded noise region in
the nonregularized reconstruction was minimized (Figs. 3
and 4). The calculated L-curve is shown in Fig. 1 for a
representative set of aliased pixels for the 2.0-fold accelerated
case.

The SENSE reconstructions using lower-spatial-resolu-
tion reference scans are shown in Fig. 5 and Table 3. In
2.00-fold acceleration using a reference scan at 50% of the
spatial resolution of the accelerated acquisition, the aver-
age g-factor was reduced by the regularization method
from 1.08 to 0.73. When the reference scan with 25% of the
spatial resolution of the 2.00-fold accelerated acquisition
was employed, the average g-factor was reduced from 1.10
to 0.73. For the higher acceleration (2.67-fold) case, a ref-
erence scan of 50% of the spatial resolution resulted in an
average g-factor of 1.21. Regularization reduced this to
0.86.

In this simple fMRI model data, the contrast reduction
resulting from replication of the reference image was com-
pensated for by the lower noise in the regularized recon-
struction. A two-sample t-test between the active and base-
line conditions showed that the use of regularization in-
creased the f-statistics from 5.93 to 6.77.

For a full-FOV image with a matrix size of 256 X 256, the
computation times for estimating the regularization pa-
rameters were 72 min, 45 min, and 26 min for the 2.00-,
2.67-, and 4.00-fold accelerations, respectively. After the
regularization parameters were estimated, it took 44, 34,
and 24 min to reconstruct a single-slice, single-measure-
ment aliased image at 2.00-, 2.67-, and 4.00-fold accelera-
tions, respectively, including calculations of both regular-
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FIG. 2. The reconstructed phantom images
and g-factor maps using unregularized or
regularized reconstruction in 50%, 62.5%,
and 75% phase encoding.

ized and nonregularized unfolded images and their asso-
ciated g-factor maps.

DISCUSSION

The regularization approach introduced in this work was
intended to minimize SNR loss by constraining the matrix
inversion. Mathematically, this is equivalent to obtaining a
compromise between an expected a priori result and the
noisy result from inversion with no conditioning. Such an
approach is equivalent to the maximal a posteriori (MAP)
estimation in stochastic Bayesian modeling. The “opti-
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mal” solution in this scenario thus implies the simulta-
neous minimization of model errors and prior errors,
which is graphically represented at the elbow of the L-
curve. The proposed regularized parallel MRI reconstruc-
tion algorithm is expected to be universally workable, and
independent of the k-space sampling scheme, the array
coil configuration, and the imaging anatomy. In the regu-
larized SENSE reconstruction, we found that g-factors can
be smaller than 1. A g-factor of 1 indicates that the recon-
struction added no additional noise due to the operation of
unfolding the aliased image alone. A g-factor of <1, which
can occur when regularization is employed, indicates that
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Table 1

G-factors in Unregularized and Regularized SENSE
Reconstructions From Phantom Images Using a 2-channel
Phased Array Coil at 50%, 62.5%, and 75% Phase Encoding

Lin et al.

Table 2

G-factors in Unregularized and Regularized SENSE
Reconstructions From In Vivo Images Using an 8-channel Phased
Array Coil at 25%, 37.5%, and 50% Phase Encoding

Unregularized Regularized Unregularized Regularized
Acceleration Acceleration
Mean SD Median Mean SD Median Mean SD Median Mean SD Median
2.00 1.47 1.56 1.17 0.80 0.52 0.67 2.00 1.07 0.12 1.02 0.72 0.25 0.66
1.60 143 1.96 1.07 0.76 0.65 0.60 2.67 1.22 0.28 1.14 0.84 0.31 0.98
1.33 1.31  1.27 1.00 0.70 0.58 0.50 4.00 2.04 0.58 1.94 152 0.53 1.52

FIG. 8. The reconstructed in vivo images and g-
factor maps using unregularized or regularized re-
construction in 37.5% (top panel) and 50% (bot-

acc: 2.67 tom panel) phase encoding.
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ace. 2.00
reg.

acc. 2.67
unreg.

acc. 4.00

FIG. 4. The selected temporal lobe area from the whole brain image
as shown by the white box (top panel). Detailed anatomy from
unregularized and regularized SENSE reconstructions of 2.00-,
2.67-, and 4.00-fold accelerations.

the unfolding operation itself decreases the stochastic vari-
ability of the estimated spin density compared to the full-
FOV reference scans. This reduction in noise results from
the prior knowledge used in the regularization process.
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From the original definition of the g-factor, when exclud-
ing the effect of number of samples (or the acceleration
factor, R) in the denominator of the first term in Eq. [4], the
g-factor is the ratio of the variance of the estimated spin
density from parallel acquisitions over the variance of the
spin density from the full-FOV reference scan. Since prior
information is employed in the regularized parallel MRI
reconstruction, less variability of the estimated spin den-
sity from parallel acquisitions is expected. Thus, the use of
regularization can partially compensate for the SNR loss
due to the reduced samples in the accelerated acquisition.
It is important to note that this reduction reflects the use of
prior knowledge, which may lead to a biased result. A
potential concern with the use of regularization is that
image features of the reference scan may be replicated in
the reconstructed image. This bias is seen as imparted
image blurring in Fig. 5 for the high-acceleration-rate re-
construction using four-fold lower-spatial-resolution refer-
ence images. For an fMRI time-series experiment, later
time-points might be biased toward the first reference im-
age, reducing the contrast between the activated and rest-
ing state. The model fMRI data set analyzed here suggests,
however, that the CNR of the time series is improved by
the regularization procedure. Thus the contrast reduction
is less important than the noise reduction due to regular-
ization. Another concern with the use of regularization in
parallel MRI reconstruction is that the noise in the prior
reference itself could at some point be introduced into the
reconstruction, thereby limiting the visible SNR improve-
ments. However, the quality of the full-FOV prior image
can be improved either by multiple averages if parallel
MRI is used for dynamic imaging applications, or by spa-
tial smoothing using kernels with dimensions similar to
the signal, based on the matched-filter theory.

The advantage of using regularized parallel MRI recon-
structions was previously reported by Sodickson (2) in a
study on cardiac imaging, in which an empirical formula
of a fraction (0.05) of the first eigenvalue was used. Simi-
larly, regularized SENSE reconstruction using an empiri-
cal regularization parameter was described by King (10).
Subsequently, other studies have demonstrated the bene-
fits of prior information in parallel MRI reconstructions
(11-13,15). In contrast to fixed regularization strategies,
we have utilized an automatic regularization implemented
by mathematically and computationally convenient algo-
rithms to stabilize the image reconstruction. This is ex-
pected to be more adaptable to different anatomy and coil
configurations.

In this study, we utilized the so-called “in vivo SENSE”
reconstruction approach described by Sodickson (2). This
method substitutes a priori information for the detailed
estimate of the coil profile used by SENSE (3). In the
uniform phantom, the two methods are identical, since the
full-FOV a priori image is identical to a coil profile map.
We chose the in vivo sensitivity reconstruction approach
to demonstrate the with/without regularization in unfold-
ing effects in “in vivo SENSE” because 1) the g-factor gains
are independent of problems incurred from misestimation
of the coil sensitivity profiles; 2) the inclusion of the phan-
tom study demonstrates regularization in both “tradi-
tional” SENSE and in vivo SENSE, since in vivo SENSE
reduces to a form of traditional SENSE in this case; and 3)
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ref: 26%
acc.: 2.00

the in vivo SENSE method has an intrinsic appeal for
time-series measurements (such as fMRI), where only
small intensity changes are expected relative to the base-
line image.

In the current experiments, our regularization approach
worked robustly with different field strengths and array
coil configurations, and the benefits of reduced g-factor-
associated SNR loss were consistently observed. Once the
regularization parameters are determined, the computa-
tional reconstruction time is identical to the reconstruc-
tion without regularization. Thus the additional computa-
tional demand for the proposed technique is the total time

Table 3

Lin et al.

FIG. 5. Detailed temporal lobe anatomy
from unregularized and regularized SENSE
reconstructions of 2.00- and 2.67-fold ac-
celerations using reference scans at 50%
and 25% spatial resolution of the acceler-
ated acquisitions.

ref: 50%
acc.: 2.67
reqg.

ref: 26%
acc.: 2.00

needed to estimate the regularization parameters. The long
computational time required for even unregularized inver-
sion using MATLAB shows that this environment is useful
only for testing the method. Note that our unfolding of
aliased SENSE images includes a calculation of both reg-
ularized and nonregularized reconstructions and their as-
sociated g-factor maps. The computation time can be re-
duced to 1/4 of the reported time if only one set of the
unfolded full-FOV image is estimated. Computational
speed may be further improved by optimizing code plat-
form. Even given the closed-form model errors and prior
errors in Eq. [9], searching through different \*’s is neces-

G-factors in Unregularized and Regularized SENSE Reconstructions From In Vivo Images Using an 8-channel Phased Array Coil at
2-fold and 2.67-fold Acceleration Using Reference Image of Lower Spatial Resolutions

Reference Unregularized Regularized
Acceleration image

resolution Mean SD Median Mean SD Median
2.00 100% 1.07 0.12 1.02 0.72 0.25 0.66
2.00 50% 1.08 0.15 1.02 0.73 0.26 0.66
2.00 25% 1.10 0.20 1.01 0.73 0.27 0.67
2.67 100% 1.22 0.23 1.14 0.84 0.31 0.98
2.67 50% 1.21 0.23 1.14 0.86 0.31 1.01
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sary to locate the minimal curvature. This could be made
more efficient by the use of a direct regularization estima-
tion method. In dynamic imaging, the impact on the in-
creased image reconstruction time due to regularization
estimation can be minimized by estimating regularizations
only once, and then using identical regularization param-
eters for the repeated time points. This is particularly
attractive for functional brain activation studies, in which
the changes with time are quite small. In addition to the
proposed L-curve technique, other automatic regulariza-
tion estimation methods, such as generalized cross valida-
tion (GCV) (16,17), can potentially be used to obtain ap-
propriate regularization estimations.

CONCLUSIONS

In this work we present an approach to employ regular-
ization in reconstructing parallel MRI data in order to
reduce the noise amplification of the reconstruction (g-
factor). The proposed L-curve algorithm was fully auto-
matic and showed a significant reduction in average g-
factors in phantom and in vivo data at 1.5T and 3T. For
some pixels the g-factor was reduced to <1, indicating that
the a priori knowledge in the reconstruction reduced the
variability below that of the full-FOV reference scan. The
reliance on a priori knowledge did not, however, reduce
functional imaging CNR in a model fMRI experiment. Al-
though the method was demonstrated using the in vivo
SENSE method, the regularization method for reducing
noise amplification may be beneficial for most variants of
parallel MR reconstruction. The use of the lower spatial
full-FOV reference image as the regularization prior infor-
mation at large accelerations may result in oversmoothed
reconstructed images, leading to a loss of spatial resolu-
tion.
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