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Abstract: Distributed source models of magnetoencephalographic (MEG) and electroencephalographic
(EEG) data employ dense distributions of current sources in a volume or on a surface. Previously,
anatomical magnetic resonance imaging (MRI) data have been used to constrain locations and orientations
based on cortical geometry extracted from anatomical MRI data. We extended this approach by first
calculating cortical patch statistics (CPS), which for each patch corresponding to a current source location
on the cortex comprise the area of the patch, the average normal direction, and the average deviation of
the surface normal from its average. The patch areas were then incorporated in the forward model to yield
estimates of the surface current density instead of dipole amplitudes at the current locations. The surface
normal data were employed in a loose orientation constraint (LOC), which allows some variation of the
current direction from the average normal. We employed this approach both in the �2 minimum-norm
estimates (MNE) and in the more focal �1 minimum-norm solutions, the minimum-current estimate
(MCE). Simulations in auditory and somatosensory areas with current dipoles and 10- or 20-mm diameter
cortical patches as test sources showed that applying the LOC can increase localization accuracy. We also
applied the method to in vivo auditory and somatosensory data. Hum Brain Mapp 27:1–13, 2006.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Magnetoencephalography (MEG) is a noninvasive tool to
investigate the human brain function with millisecond tem-
poral resolution [Cohen, 1968; Hämäläinen et al., 1993] by

measuring magnetic fields ensuing from the neural currents
in the brain. MEG is closely related to electroencephalogra-
phy (EEG), which measures the electric potential distribu-
tions generated by the same sources. MEG is selectively
sensitive to the source currents that are tangential with
respect to the surface of the head, whereas EEG detects both
the tangential and radial source components. Localization of
the sources with these methods is difficult due to the non-
uniqueness of the electromagnetic inverse problem. To ren-
der the solution unique, several source models with differ-
ent constraints have been proposed.

The most popular MEG and EEG source modeling ap-
proach is to assume that the extent of activation is small and
consequently that the measured fields can be accounted for
by modeling the source by a set of equivalent current di-
poles (ECDs). If multiple sources are simultaneously active,
reliable estimation of the source parameters is difficult be-
cause of the nonlinear relationship between the source loca-
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tions and the measured signals. Although global optimiza-
tion algorithms have been tailored to accomplish this task
[Uutela et al., 1998], the most feasible solutions combine
optimization algorithms with partly heuristic interactive ap-
proaches, motivated by prior physiological and anatomical
information. In addition, the dipole may be an oversimpli-
fication as a model for spatially extended source activity.

To overcome these difficulties, several distributed current
solutions have been proposed. A widely employed distrib-
uted source localization approach in MEG and EEG is based
on the �2-norm prior, resulting in diffuse minimum-norm
estimates (MNE) [Dale and Sereno, 1993; Dale et al., 2000;
Hämäläinen and Ilmoniemi, 1984]. More focal estimates can
be obtained by using an �1-norm prior; the corresponding
minimum-norm solution is often called the minimum-cur-
rent estimate (MCE) [Matsuura and Okabe, 1995; Uutela et
al., 1999].

It has been proposed previously that individual anatom-
ical information acquired with structural magnetic reso-
nance imaging (MRI) can be incorporated into the source
localization with the �2-norm constraint. In particular, the
locations of the sources can be constrained to the cortical
mantle and their orientations to be perpendicular to the local
cortical surface [Dale and Sereno, 1993]. Such a modeling
constraint is motivated by the physiological information that
the most significant sources of MEG and EEG signals are
postsynaptic currents in the pyramidal cells on the cortex
and that the principal net direction of these currents is
perpendicular to the cortical surface [Hämäläinen et al.,
1993; Okada et al., 1997]. Importantly, in MCE, the optimi-
zation algorithm becomes more straightforward if the ori-
entations of the sources are known and the source ampli-
tudes subsequently estimated subject to the �1 constraint. To
this end, the MCE implementation described in Uutela et al.
[1999] used the current-source orientations provided by
MNE.

To maintain computational efficiency, distributed source
models usually employ a spacing of 5–10 mm between
neighboring sources in the discrete source space. In our
previous work with the minimum �2-norm estimate [Dale et
al., 2000], we employed the cortical location constraint with
current orientations either unconstrained or strictly con-
strained to the orientation of the cortical normal at each
source space point. Using a strict orientation constraint is
sensitive to the sampling algorithm used in the creation of
source space, because it does not take into account the fact
that the orientation may vary considerably within each typ-
ically 5–10-mm diameter cortical patch corresponding to
each of the source space points. In addition, misalignment of
the MEG/EEG and MRI coordinate frames is more critical
when the orientations are strictly constrained because the
magnetic field and electric potential patterns are very sen-
sitive to the orientations of the currents [Hämäläinen et al.,
1993].

To overcome the problems associated with the strict cor-
tical orientation constraint, we calculate cortical patch statis-
tics (CPS), which quantifies the variation of the surface nor-

mal within each cortical patch. We incorporate the refined
normal information in the minimum-norm inverse solutions
as the loose orientation constraint (LOC). We employ this new
approach in the calculation of both �1- and �2-norm distrib-
uted solutions. In the sequel, we present the technical details
of our approach, followed by simulations on both auditory
and somatosensory cortex with different source configura-
tions. Finally, analysis of auditory and somatosensory MEG
data will be presented to demonstrate the utility of the
approach.

DISTRIBUTED INVERSE SOLUTIONS

Minimum-Norm Estimates

The measured MEG/EEG signals and the underlying cur-
rent source strengths are related by the linear transforma-
tion:

Y � AX � N , (1)

where Y is an m-by-t matrix containing measurements from
m sensors over t distinct time instants, X is a 3n-by-t matrix
denoting the unknown time-dependent amplitudes of the
three components of n current sources, A is the gain matrix
representing the mapping from the currents to MEG/EEG
signals, i.e., the solution of the forward problem, and N
denotes noise in the measured data. The most feasible as-
sumption is that N is Gaussian with a spatial covariance
matrix C, to be estimated from the data. If we further assume
that the source amplitudes have a Gaussian a priori distri-
bution with a covariance matrix R, we obtain the Bayesian
maximum a posteriori (MAP) estimate or �2 minimum-norm
solution, linearly related to the measurements, as [Dale and
Sereno, 1993]

XMNE � RAT(ARAT � �2C) � 1 Y � WY , (2)

where �2 is a regularization parameter to avoid magnifica-
tion of errors in data in the current solution and the super-
script T indicates the matrix transpose. We have also implic-
itly assumed that C and R are time independent and that
there are no temporal correlations. In the original un-
weighted minimum-norm approach, R is simply a multiple
of the identity matrix; however, there is no direct physio-
logical information to support this selection of the source
priors. Rather, the choice is motivated by the simple com-
putational realization of the estimation procedure. Conse-
quently, we prefer not to emphasize here the Bayesian in-
terpretation of the MNE.

Equation (2) can be also viewed as the analytic solution of
an optimization problem where the cost function is a sum of
weighted least-squares error between the measured and
modeled data and a penalty term consisting of the power of
the estimated currents. In the subsequent section of MCE,
we will consider another source prior, namely the �1-norm
prior, which corresponds to a double-exponential probabil-
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ity distribution function with zero mean as discussed in
Uutela et al. [1999]. In MCE, the penalty term is the sum of
the absolute values of the source currents whereas the data
error term is identical to that in MNE. The two approaches
can thus be regarded as two variants of distributed source
modeling techniques with distinct prior assumptions.

In the calculation of the gain matrix A, a common practice
is to assume dipolar sources in a dense grid covering either
the entire brain or the cortical mantle. In this approach, the
current estimates are dipole amplitudes, whose unit is [Am];
however, a more appropriate quantity to consider is the
volume or surface dipole density given in [Am/m3] or [Am/
m2], respectively. In case of cortically constrained currents,
transformation to current density representation requires an
approximation for the area of the cortical patch correspond-
ing to each source location. We compute these patch areas
using detailed cortical geometry information, as will be de-
scribed below. The transformation is accomplished by mul-
tiplying each column of a “dipolar” gain matrix by the
corresponding patch area. In the following discussion, we
assume that the current density transformation has been
already included in A. This transformation does not involve
changes to R, because in the original formulation the as-
sumption of equal variances across the source space was
actually not justified due to the potentially varying patch
sizes. In our implementation, we calculated A using a single-
layer boundary element model (BEM) assuming the shape of
the inner skull surface [Hämäläinen and Sarvas, 1989; Oos-
tendorp and van Oosterom, 1989].

In Equation (2), the current orientations have not been
constrained. A priori orientation information can be easily
incorporated by replacing the gain matrix by

Afixed � A� , (3)

where � is the 3n-by-n matrix containing the unit vectors
pointing to the directions of the currents. If the direction
cosines of the kth dipole are ckx, cky, and ckz, the kth column
of � reads

�k �(0. . .0 ckx cky ckz 0. . .0)T
Ç Ç
3(k�1) n�3k . (4)

Instead of applying Equation (2) directly, it is convenient to
use an equivalent formulation

XMNE � RÃT (ÃRÃT � �2I) � 1 Ỹ � W̃Ỹ , (5)

where

Ỹ � C � 1/2 Y
(6)

Ã � C � 1/2 A

are the spatially whitened data and spatially whitened gain
matrix, respectively. The noise-covariance matrix of the
whitened data is an identity matrix, as indicated by the
comparison of Equations (2) and (5). The whitening proce-
dure also allows one to use the scaling �2 � �2tr(ÃRÃT)/m,
where �2 denotes the inverse of the signal-to-noise ratio
(SNR) of the whitened data, to bring the regularization
parameter to a reasonable scale even in cases where the
measurements have different units of measure, which is the
case when planar gradiometer and magnetometer data or
MEG and EEG data are combined in a single estimate.

The MNE is known to have a bias toward superficial
currents caused by the attenuation of the MEG and EEG lead
fields with increasing source depth. It is possible to compen-
sate for this tendency by modifying our diagonal source-
covariance matrix R by scaling the entries by a function
increasing monotonically with source depth, denoted here
by fk for the kth source. A commonly used choice is

fk � �k
2�/(a3k � 2

T a3k � 2 � a3k � 1
T a3k � 1 � a3k

T a3k)� , (7)

where ap is the pth column of A (the gain matrix with patch
sizes taken into account), �k is the corresponding cortical
patch size, and � is a tunable parameter. The depth weight-
ing in Equation (7) is independent of the patch size. Al-
though Fuchs et al. [1999] suggest that � � 1, we have found
in our simulations that this does not provide sufficient com-
pensation. Our preferred value is slightly bigger (� 	 1.4)
[Lin et al., 2004]. In Equation (7), we have effectively em-
ployed the dipolar gain matrix because two sources at the
same depth should receive the same weight independent of
the source patch size.

Noise-Normalized MNE

In the above, Equations (2) and (5) provide the best-fitting
values of the amplitudes or, in Bayesian view, the maximum
a posteriori (MAP) estimate. To make the resulting maps
conceptually similar with those calculated in other func-
tional imaging modalities, Dale et al. [2000] proposed that
current values should be converted into dynamic statistical
parametric maps. To this end, we need to consider the
variances of the currents

wk � (WCWT)kk � (W̃W̃T)kk . (8)

For fixed-orientation sources, we now obtain the noise-nor-
malized activity estimate for the kth dipole and pth time
point as

zkp �
Xk,p

MNE

wk
, (9)

which is t distributed under the null hypothesis of no activ-
ity at the location k. Because the number of time samples
used to calculate the noise-covariance matrix C is quite large
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(more than 100), the t distribution approaches a unit normal
distribution (i.e., a z score).

If the orientation is not constrained, the noise-normalized
solution is calculated as

Fkp �

�
q�1

3

(X3(k�1)�q,p
MNE )2

�
q�1

3

w3(k�1)�q
2

. (10)

Under the null hypothesis, Fkp is F distributed, with three
degrees of freedom for the numerator. The degree of free-
dom for the denominator is typically large, again depending
on the number of time samples used to calculate the noise-
covariance matrix.

As discussed in Dale et al. [2000], the noise-normalized
estimates resulting from the transformations given in Equa-
tions (9) and (10) have a smaller depth bias than do the
MNEs obtained without applying depth weighting. Further-
more, the point-spread function, i.e., the image of a point
current source, is more uniform in space in the noise-nor-
malized estimate than it is in the MNE.

Minimum-Current Estimates

In contrast to the MNE, the MCE employs the �1-norm as
constraint [Matsuura and Okabe, 1995; Uutela et al., 1999].
Mathematically, MCE can be formulated as the solution of
the optimization problem:

Xp
MCE � argmin

xi,p
� �

i�1

n

wi�Xi,p�� ,
(11)

subject to Ỹrp � BrXp
MCE

where Xp
MCE is the solution at time point p and wi are the

weights of dipole sources, whereas Ỹrp and Br are derived
from the measurement data and the forward solution for
fixed-orientation sources to implement regularization as fol-
lows. As before, let � be the n-by-3 matrix containing the
source orientations and compute the singular-value decom-
position

Ã� � U�VT . (12)

Then

Br � Ur
TÃ�

(13)

Ỹr � Ur
TỸ ,

where Ur is composed of the first r columns of U. This
method of eigenvalue truncation in regularization was in-
troduced to MCE by Uutela et al. [1999], and it is closely
related to using the regularization parameter �2 in Equations
(2) and (5). It is easy to show that the latter corresponds to
weighting of the eigenvalues with a smooth transition func-
tion instead of the step function implied by Equation (13).

We selected �2 and the truncation point for the MCE
regularization so that in both cases, 99% of the total lead
field power was included in the estimation. Specifically, �2

was first decided from the whitened data in MNE. For the
smooth regularization function employed in MNE, the rela-
tionship between �2 and the amount of lead field power
included is

pMNE �

�
k�1

m
�k

2

�k
2 � �2 �k

2

�
k�1

m

�k
2

, (14)

where �k are the singular values of ÃR1

2
. For the truncation in

MCE, we select r such that

pMNE 
 pMCE

pMCE �

�
k�1

r

�k
2

�
k�1

m

�k
2

, (15)

where �k are the singular values of Ã�, i.e., the diagonal
elements of � defined in Equation (12).

The above implementation of MCE requires the knowl-
edge of the source orientations, to be incorporated by the
matrix � in Equations (12) and (13). In principle, it is also
possible to implement MCE without requiring � to be spec-
ified first. The solution of this minimization problem is
numerically demanding; therefore, we prefer using the orig-
inal MCE formulation proposed by Uutela et al. [1999].

The weights for currents, wi in Equation (11), were the
Euclidean norms of the columns of A�. The orientation
matrix � was obtained either from an initial MNE using free
orientation, loose cortical orientation constraint, or strict
cortical orientation constraint (see section below). In line
with Uutela et al. [1999], we employed linear programming
[Moon and Stirling, 2000] to estimate the magnitudes of
dipole sources.

REFINED CORTICAL CONSTRAINTS

Representation of the Cortical Surfaces

As described in the previous section, a feasible anatomical
constraint for MEG and EEG source localization is to restrict
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the source locations to the cortical mantle, extracted from the
individual’s MRI. With modern segmentation methods, a
representation for the geometry of the cortex can be auto-
matically generated from high-resolution 3-D MRI data sets.
We employed the FreeSurfer software [Dale et al., 1999;

Fischl et al., 1999, 2001] to build the triangular cortical sur-
face mesh from T1-weighted anatomical 3-D volume MRI
data (magnetization prepared rapid acquisition gradient
echo [MPRAGE] sequence, repetition time/echo time [TR/
TE] � 2,530/3.49 ms, flip angle � 7 degrees, partition thick-
ness � 1.33 mm, matrix � 256  256, 128 partitions, and
field of view � 21 cm  21 cm) acquired in a 1.5-T MRI
scanner (SIEMENS Medical Solutions, Erlangen, Germany)
with a 1-mm isotropic spatial resolution. The principal sur-
faces generated by FreeSurfer are the pial surface and the
gray–white matter boundary; we used the latter to generate
the cortically constrained source space. We confirmed the
accuracy of the segmentation by superimposing the loca-
tions of the vertices of the triangulation on the original MRI
slices and found that the quality of the segmentation was
excellent, as also discussed in Dale et al. [1999].

In addition to the folded surface, FreeSurfer also com-
putes inflated and flattened representations of the cortex,
which expose the parts of the cortex embedded in the sulci.
These representations are thus particularly useful for visu-
alizing MEG data, which are sensitive mainly to fissural
activity.

To achieve sufficient anatomical detail, the triangular tes-
sellations of the cortical surfaces consisted of around
130,000–150,000 vertices per hemisphere, corresponding to
an approximate triangle size of 1 mm. For source modeling,

Figure 1.
The triangulated left-hemisphere white-matter surface derived
from high-resolution T1-weighted MRI. The red box indicates the
region to introduce the definition of local cortical patch (see Fig.
2). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 2.
A cortical patch bounded by the thick red lines. Blue spots denote the locations of the sources after
10-mm decimation. A Cartesian coordinate system with z-direction aligned with the average normal
direction is indicated with the black arrows. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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this dense triangulation was subsequently decimated to a
source space of approximately 7,500 dipoles with 7-mm
distance between the nearest two dipoles. The decimation
was motivated by the limited spatial resolution intrinsic to
the source localization using MEG/EEG and practical com-
putational efficiency concerns. However, this simplified
source geometry may yield inaccurate dipole orientations
that do not take into account the orientation variation over
the patch belonging to each decimated current source loca-
tion. Furthermore, the actual areas of the patches have to be
taken into account in the calculations to correctly estimate
the current density on the cortex.

Cortical Patch Statistics

To acquire more representative cortical information, we
used the original dense cortical mesh to obtain a character-

ization of the cortical patches. We employed the Dijsktra
algorithm [Bertsekas, 2000] along the edges of the cortical
mesh to calculate the distance from all vertices to each of the
decimated source points. For each vertex of the original
cortical mesh, the closest decimated dipole location was thus
determined. A cortical patch Pd can be now defined by the
set of vertices in the original dense triangulation sharing the
same nearest decimated dipole location, as shown in Figures
1 and 2. We computed four quantities for each cortical patch
associated with the decimated source locations: the number
of vertices in each patch, Nd; the patch size, �d; the average
vertex normal, n� d; and the average deviation of the vertex
normals from their average, �d. We refer to these data col-
lectively as the CPS.

Given the cortical patch definitions across the whole cor-
tical mantle, �d are calculated by including the area of each
surface triangle to the area of the patch to which it belongs.
At the boundary of the cortical patch, the area of the triangle
was divided proportional to the number of vertices belong-
ing to the same cortical patch, as shown in Figure 3. The
remaining quantities included in CPS are defined as

n� d �
1

Nd
�

k�Pd

n̂k/� 1
Nd

�
k�Pd

n̂k� ,
(16)

�d �
1

Nd
�

k�Pd

arccos(n̂k�n� d)

where k�pd defines the vertices in patch d, n̂k is the approx-
imated unit normal vector at vertex k, and � � � indicates the
length of the enclosed vector.

Figure 4 shows the spatial distribution of the cortical
patch sizes on an inflated left hemisphere cortical surface.

Figure 3.
The division of a cortical surface triangle with area A and vertices
V1, V2, and V3 to different cortical patches. The red dashed lines
indicate the boundaries between cortical patches. [Color figure
can be viewed in the online issue, which is available at www.inter-
science.wiley.com.]

Figure 4.
The spatial distribution of the cortical patch areas on an inflated
left-hemisphere cortical surface.
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This figure indicates that the distribution of the patch areas
is not systematic and that adjacent patches can have sub-
stantial size differences. Figure 5a shows the distribution of
�d in one subject. The data were obtained by decimating the
original dense triangulation to an approximate source grid
spacing of 7 mm. In 99% of the patches, �d � 25 degrees. The
median of this distribution is 10 degrees. Figure 5b shows
the distribution angles between n� d and the normal vectors at
the decimated source locations. Mostly, such a deviate is
between 5–10 degrees with a median of 8 degrees. In about
3% of the decimated sources, the averaged normal deviates
from the source location normal as much as 30 degrees.
Figure 5c shows the distribution Nd. On the average, a
cortical patch contains 40 vertices when we employ a 7-mm
decimation. Cortical patches with less than 20 and more than
60 vertices constitute only approximately 5% of the total
number of patches. The distribution of �d is shown in Figure
5d. With 7-mm decimation, the patches have an averaged
area of 22.76 mm2. The standard deviation of the distribu-
tion is 7.4 mm2.

Computation of the patch statistics needs to be carried out
only once per each subject and source decimation. With
7-mm source spacing, the computation takes about 9 min on
a 1.4-GHz AMD Athlon processor. The computational pen-
alty in the subsequent calculation of the MNE and MCE
solutions is negligible.

Loose Orientation Constraint

Rather than assigning a fixed orientation to decimated
dipole directly, we employ the average orientation n� d within
a patch to reduce the effect of sampling the original tessel-

lation. To accommodate further the deviation �d from the
average normal direction in each cortical patch, we use an
LOC as follows:

R{d,d}
cort � [sin�d sin�d 1]

Ã{d}
cort � Ã{d}[êx,d êy,d êz,d] (17)

X � RcortÃcortT(Ã8cortRcortÃcortT
� �2I) � 1Ỹ

where R{d,d} are the three diagonal elements of R corre-
sponding to one dipole and d denotes the column indices for
one dipole in the forward matrix. �êx,d êy,d êz,d] is a rotation
matrix with êz,d � n� d , the average cortical normal direction
over a cortical patch, êx,d and êy,d being perpendicular to it in
the “tangential” plane. The quantity sin�d ranges from 0 to 1
as 0 � �d � 90 degrees. The reason for using the sine
function here is that we will later relate �d and �d, given as
an angle, by constant factor: �d � ��d. As a result, we obtain
three alternatives for computing the cortically constrained
MNE: without an orientation constraint, with fixed orienta-
tion constraint taken as samples from the complete cortical
triangulation, and the LOC. In the sequel, we refer to the
three methods as free orientations (FO), strict orientation
constraint (SOC), and LOC, respectively. In terms of Equa-
tion (17), sin�d � 1 for FO, sin�d � 0 for SOC, and 0 � sin�d

� 1 for LOC.

Refined Cortical Constraints and MCE

In the original implementation of MCE, an MNE with
unconstrained source orientations was employed to estimate
the dipole orientations for the computation of MCE. Linear
programming (LP) was used subsequently to solve the min-
imization problem in Equation (11) [Uutela et al., 1999]. In
this approach, no cortical location or orientation constraint
was used; the source space consisted of an even 3-D grid of
locations covering the brain. In our simulation and real-data
examples to follow, we will always constrain the source
locations to the cortex. The anatomically informed MCE is
computed given the measurement data, the forward solu-
tion, and the dipole orientation estimates. The source orien-
tations are obtained by either computing an initial anatomy-
informed MNE or by using the cortical normal estimates
directly.

We compare three alternatives for the source orientation
constraint in the initial MNE, required in the computation of
MCE. In the first one, we calculate the MNE without orien-
tation constraint and use the source orientations given by
the MNE in the MCE computation. In the second alterative,
we use the CPS and the LOC together with the cortical
location constraint in the computation of the initial MNE.
The incorporation of brain anatomy from the high-resolu-
tion MRI with cortical patch definitions is expected to give a
better approximation for the dipole orientations than does
the unconstrained MNE used in Uutela et al. [1999]. Our
third alternative is to use a strict cortical orientation con-

Figure 5.
a: The distribution of the average deviations (�d) of the cortical
normal from the average normal directions (n�d). b: The distribu-
tion of angles between n�d and the dipole orientations at the
decimated surface points. c: The distribution of the number of
dipoles in a cortical patch (Nd). d: The distribution of the areas of
the cortical patches (�d).

� MNE Using Cortical Orientation Constraints �

� 7 �



straint in the MCE calculations directly without computing a
MNE first.

Inverse Solution Visualization

To assess the localization precision of using proposed FO,
SOC, or LOC in MNE and MCE, we linearly scaled all
inverse solutions between 0.0 and 1.0 individually. This
assures that the dynamic ranges of the inverse solutions of
all variants proposed herein are identical. For illustration,
we showed the maximal 50% of the MNE and noise-normal-
ized MNE solutions and the maximal 70% of the MCE

solutions. The reason for different threshold values in MNE
and MCE is that the MCE solutions are more focal by the
nature of �1 norm prior.

SIMULATIONS

To evaluate the performance of the LOC, we generated
simulated MEG data by assuming source in the central
sulcus in the regions of the primary somatosensory area (SI)
on the left hemisphere and in the Sylvian fissure in the
regions of the primary auditory cortex on the right hemi-
sphere. We employed three source configurations: current
dipoles, 10-mm diameter patches, and 20-mm diameter
patches. The orientations of these simulated sources were
adjusted to be perpendicular to the local cortical surface as
informed by anatomical MRI. The ideal sensor measure-
ments on MEG sensors were thus calculated using the gain
matrix and the source amplitudes. In calculation of the gain
matrix, we used the MEG/MRI registration from a realistic
306-channel Vectorview MEG system (Elekta-Neuromag,
Ltd., Helsinki, Finland) covering the cerebral cortex evenly.
For simulations with patches, we calculated the forward
solution in the complete dense cortical grid and placed a

Figure 6.
Comparison of minimum-norm estimates (MNE), noise-normal-
ized MNE, and minimum-current estimate (MCE) computed from
simulated data due to a current dipole in the temporal lobe,
indicated by a blue dot. Cortical current estimates were normal-
ized between 0 and 1 to illustrate the spatial extent of the
distributions.

Figure 7.
Comparison of minimum-norm estimates (MNE), noise-normal-
ized MNE, and minimum-current estimate (MCE) computed from
simulated data due to a current dipole in the primary somatosen-
sory area (SI) hand area, indicated by a blue dot. Cortical current
estimates were normalized between 0 and 1 to illustrate the
spatial extent of the distributions.
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dipole source of equal amplitude at every vertex within the
patch.

To approximate realistic conditions where contaminating
noise is present, we superimposed Gaussian noise of zero
mean and unit variance on the ideal sensor measurements at
power SNR of 100. The definition of SNR here is the ratio
between the instantaneous power of the ideal MEG sensor
measurements over that of the MEG sensor noises. In our
experience, the SNR defined in this way ranges from 4 to 100
in actual MEG studies with 50–200 averages in evoked-
response studies. In both auditory and somatosensory data,
we typically obtain SNR in the higher end of this range. Our
simulations thus correspond well to high-SNR MEG data.

Distributed source estimates were calculated using MNE,
noise-normalized MNE [Dale et al., 2000; Liu et al., 2002],
and MCE approaches, employing a decimated source space
with a 7-mm grid spacing. The orientations of sources were
unconstrained, strictly constrained to the average normal
within the cortical patch, or loosely constrained using the
LOC with 0.5�d � �d � 5�d in Equation (17). The same
multiplier was used for all patches. The precision of local-
ization was evaluated by the distance between the center of
mass of the distributed source estimates and the center of
mass of the simulated sources. We define this metric as shift
of center of mass Scm (SCM). To avoid influence from the
background insignificant dipole estimates, we used only the
dipoles whose amplitudes exceeded 50% of the maximum
amplitude. To demonstrate the behavior of the solutions
when multiple sources were simultaneously active, we sim-
ulated two simultaneously active dipole sources at somato-
sensory cortex with separation of 21 mm and subsequently
localized the synthetic MEG sensor data with free, strict
cortical, or loose cortical orientation constraints using MNE,
noise-normalized MNE, and MCE.

Figures 6 and 7 show simulation results of MNE, noise-
normalized MNE, and MCE using FO, SOC, and LOC for
one particular ECD source at auditory cortex or somatosen-
sory cortex, indicated in the Figures by a blue dot. Table I
lists the shifts of center of mass using FO, SOC, and LOC for
the examples depicted in Figures 6 and 7. In MNE, FO gives
the minimal shift of the center of mass. However, when
applying noise normalization, FO-MNE yielded the largest
Scm. Using LOC, even not giving the minimal Scm in MNE,
the shifts remained smaller compared to that for FO inverse
solutions. In particular, we emphasize the difference of Scm

when applying LOC in contrast to FO or SOC: LOC-MCE
results gave minimal Scm in both auditory cortex and so-
matosensory cortex compared to that with SOC and FO.
Traditional MCE using FO-based MNE orientation may gen-
erate Scm two- to threefold larger than MCE using LOC-
based MNE orientation.

Figure 8 shows and summarizes the simulation results of
the locations of 73 simulated sources at SI and 90 simulated
sources at auditory cortex. MNE utilizing LOC on single-
dipole synthetic data yields the smallest average Scm (11.3
mm in auditory area and 5.8 mm in somatosensory area),
compared to MNE using either FO or SOC in both auditory
(FO, 11.6 mm; SOC, 12.8 mm) and somatosensory area (FO,
8.5 mm; SOC, 15.2 mm). For LOC we explored the range
0.5�d � �d � 5�d and found that the median of the optimal
�d, producing the smallest localization errors, was �d

� 2.0��. The effect of decreasing the shift of the center of
mass by appropriate LOC was observed systematically with
the more extended synthetic sources as well.

Using noise-normalized MNE, Scm values using FO and
SOC were on average approximately 9 mm, independent
of the location of the sources and their spatial extent. In
auditory cortex, using LOC resulted in Scm � 8.1 mm, 8.1
mm, and 8.4 mm for dipoles, 10-mm, and 20-mm diameter
cortical patches, respectively. In somatosensory cortex
with LOC, Scm � 8.7 mm, 8.5 mm, and 8.8 mm for dipoles,
10-mm, and 20-mm diameter extended sources, respec-
tively, contrasted to 9.5 mm, 9.4 mm, and 10.0 mm, re-
spectively, with FO, and 8.5 mm, 8.0 mm, and 8.0 mm,
respectively, using SOC. Our simulations at somatosen-
sory area indicated that using SOC could achieve the
minimal Scm compared to that using FO or LOC. Never-
theless, this benefit is less than 1 mm on average com-
pared to the loose cortical orientation constraint inverse.
Finally, MCE with LOC in auditory cortex gives the low-
est averaged Scm (7.8 mm for dipoles, 7.8 mm for 10-mm
diameter sources, and 9.2 for 20-mm diameter sources).
Using FO and SOC in MCE results in average shifts of 12
mm and 14 mm in auditory area. In the somatosensory
area, MCE with dipole orientations taken from the free-
orientation MNE resulted in average Scm values of 2.9
mm, 4.0 mm, and 5.0 mm with dipoles, 10-mm diameter,
and 20-mm diameter extended sources, respectively. If the
dipole orientations are taken from MNE with LOC, the
Scm was reduced to 2.6 mm, 3.2 mm, and 3.6 mm with

TABLE I. Shifts of the center of mass (Scm) in millimeters in the auditory cortex
and somatosensory cortex simulations

Approach

Auditory cortex Somatosensory cortex

FO SOC LOC FO SOC LOC

MNE 17.6 17.2 14.8 10.3 9.6 9.5
Noise-normalized MNE 7.0 6.9 5.6 7.0 4.4 5.3
MCE 16.3 2.6 3.0 6.5 3.0 1.8

FO, free orientation; SOC, strict orientation constraint; LOC, loose orientation constraint; MNE, minimum-norm estimate; MCE, minimum-
current estimate.
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dipoles, 10-mm diameter, and 20-mm diameter simulated
sources, respectively. MCE using a preliminary MNE with
SOC gave averaged Scm values of 3.4 mm, 3.7 mm, and 8.6
mm with single ECD, 10-mm diameter, and 20-mm diam-
eter simulated sources, respectively.

Figure 9 shows the simulation results of MNE, noise-
normalized MNE, and MCE when two sources are with
21-mm separation and are simultaneously active. In MNE,
we found that using LOC with �d � 2.0�� can reduce the
spatial distribution of the source estimates at the same
threshold, as compared to using the free-orientation case.
In addition, two loci of simulated sources were indicated
by separate dorsal and ventral MNEs. In the noise-nor-
malized MNE, LOC and FO can both provide estimates

around two active loci. The noise-normalized MNE with
SOC failed to produce two separate source estimates at
the threshold to show the most significant 50% estimates.
MCE with FO and SOC produces estimates with incorrect
peak locations, either between the two synthetic sources
or at the postcentral sulcus. Using LOC with �d � 2.0��,
MCE can resolve two simultaneously active sources and
localize them within 3-mm accuracy in the central sulcus.

Application to Auditory and
Somatosensory MEG Data

We also employed data from auditory and somatosensory
MEG experiments to test our methods in realistic situations.
The experiments were conducted with healthy subjects un-

Figure 8.
The locations of the simulated current sources at the auditory
cortex in the right hemisphere and the somatosensory cortex in
the left hemisphere. Each blue dot represents an individually active
current source. Three source extents were used: single dipole,
10-mm diameter patches, and 20-mm diameter patches (a). The
average shift of center of mass from the center of the correspond-
ing simulated source using minimum-norm estimates (MNE),
noise-normalized MNE, and minimum-current estimate (MCE) in
auditory and somatosensory areas (b). [Color figure can be viewed
in the online issue, which is available at www.interscience.
wiley.com.]

Figure 9.
Simulation with two simultaneously active dipole sources. The
associated minimum-norm estimates (MNE), noise-normalized
MNE, and minimum-current estimate (MCE) distributions are
shown with dipole locations indicated with blue dots. Cortical
current estimates were normalized between 0 and 1 to illustrate
the spatial distributions.
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der the approval of the institutional review board (IRB).
Informed consent was obtained from the subjects before the
experiments were carried out. In the auditory experiment,
the stimuli were 60-ms wide-band noise bursts (2-kHz cen-
ter frequency with 4-kHz bandwidth; 70-ms duration) pre-
sented binaurally. A 306-channel MEG system (Elekta-Neu-
romag, Ltd.) was used to record the neuromagnetic
responses. The measurement bandwidth was 0.1–172 Hz
and the data were digitized at 600 Hz. About 200 responses
were averaged. In the somatosensory study, the right me-
dian nerve was stimulated at the wrist with 0.5-ms constant-
current pulses whose amplitude was above the motor
threshold. The interstimulus interval between the stimuli
was 4 s. The measurement bandwidth was 0.03–250 Hz and
the data were digitized at 1,004 Hz. About 100 responses
were averaged.

To compare the results with discrete dipole modeling, we
used the Xfit program (Elekta-Neuromag, Ltd.) to localize
one ECD for both the auditory and somatosensory evoked-
field experiments in each hemisphere. The location of the
estimated single equivalent dipole was then displayed at the
nearest location on the inflated white-matter surface.

For the auditory experiment, Figure 10 shows the MNE,
noise-normalized MNE, and MCE of MEG recordings at 98
ms after the onset of the stimulus. The blue spot indicates
the location of single equivalent dipole fitting, which is
localized to the superior temporal gyrus (STG). Compared to
MCE, MNE and noise-normalized MNE are more diffused.
Both MNE and noise-normalized MNE resulted in fictitious
sources around the medial temporal gyrus (MTG), in addi-
tion to the activity in STG. The distance between the ECD
and the center of mass of MNE with FO, SOC, and LOC are
reported in Table II. Figure 11 shows MNE and MCE of the
somatosensory MEG experiment at 50 ms after the onset of
stimulation. The ECD was located correctly at the postcen-

Figure 10.
Minimum-norm estimates (MNE), noise-normalized MNE, and
minimum-current estimate (MCE) distributions at 98 ms after the
onset of the auditory stimuli. The blue spot indicates the location
of the corresponding equivalent current dipole (ECD). Cortical
current estimates were normalized between 0 and 1 to illustrate
the spatial distributions.

Figure 11.
Minimum-norm estimates (MNE), noise-normalized MNE, and
minimum-current estimate (MCE) distributions at 50 ms after the
onset of the median nerve stimulus. The blue spot indicates the
location of the equivalent current dipole (ECD). Cortical current
estimates were normalized between 0 and 1 to illustrate the
spatial distributions.
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tral gyrus. In MNE, it was found that the estimated activities
were mostly from postcentral gyrus with minor activation in
precentral gyrus. The distances between the center of mass
of MNE and ECD with FO, SOC, and LOC are summarized
in Table III. We found that using FO may generate the
minimal or maximal shifts depending on whether we are
measuring the center of mass or the maximum of the inverse
solution. Both MNE and MCE using LOC gave consistently
smaller shifts, regardless of whether it was being assessed
by shift in the center of mass or shift in the maximum.

DISCUSSION

Structural MRI can provide precise information about the
cortical geometry, including local cortical curvatures and the
size of localized cortical patches. We employed the sizes of
the patches to yield an estimate of the surface current den-
sity and the statistics of the cortical normals to compute
distributed MEG source estimates where the current direc-
tions are loosely constrained by the cortical normals.

The incorporation of the LOC with �d � 2��–3�� increases
the accuracy of the localization, as shown in our simulation
results in both auditory and somatosensory areas with di-
polar or extended synthetic sources. In our simulations, we
found that there is no unique optimal number across the
whole brain for the best utilization of loose cortical orienta-
tion constraint in MNE and MCE. Presumably, this is due to
the variations of cortical source space sampling and local
anatomical curvature variations. However, in MNE, noise-
normalized MNE, and MCE, we found that the utilization of
LOC results in higher accuracy in localization and better
resolution for simultaneously active sources. Our approach

to employing LOC is different from the traditional imple-
mentation of MCE using MNE with unconstrained orienta-
tion to provide dipole orientation estimates [Uutela et al.,
1999] and the MNE with a strict cortical orientation con-
straint [Liu et al., 1998]. The motivation of using a loose
cortical orientation constraint is to retain a more accurate
description of the cortical geometry when using a relatively
sparse decimated source space. If the complete dense for-
ward matrix could be employed in source estimation algo-
rithms, such a loose cortical constraint may become unnec-
essary. In such a case, the price is the higher computational
load in both �2-norm and especially �1-norm prior source
modeling. In addition, the ill-posed nature of the MEG/EEG
inverse with diffused point-spread and cross-talk metrics
does not encourage the utilization of full gain matrix down
to millimeter resolution [Liu et al., 2002]. The loose cortical
constraint is thus a compromise for both computational
efficiency and sufficient anatomical features in MEG/EEG
inverse.

We employed the shift of center of mass to evaluate the
accuracy of spatial localization and used dipole-fitting results
as a gold standard for the location of the activation. Using
single ECD fitting and mapping the result on the cortex may
introduce some errors, because our ECD modeling does not
restrict the solution on the cortex. The reasons for choosing the
ECD as a gold standard are as follows. First, previous studies
indicate that the realistic experimental data we employed (so-
matosensory median nerve stimulation and auditory stimulus)
are generated by focal sources. Second, some simulations were
based on single ECD-like point sources; thus the ECD is the
correct true source in these cases. Third, using an ECD to

TABLE II. Shifts of the center of mass (Scm) and maximum of the estimate (Smax) in millimeters from the
equivalent current dipoles in the auditory experiment 50 ms after the onset of auditory stimulation

Approach

FO SOC LOC

Scm Smax Scm Smax Scm Smax

MNE 3.1 6.2 4.0 7.0 3.2 7.0
Noise-normalized MNE 11.0 15.0 10.9 12.5 11.6 15.0
MCE 7.8 7.8 2.2 7.5 6.5 7.0

FO, free orientation; SOC, strict orientation constraint; LOC, loose orientation constraint; MNE, minimum-norm estimate; MCE, minimum-
current estimate.

TABLE III. Shifts of the center of mass (Scm) and maximum of the estimate (Smax) in millimeters from the
equivalent current dipoles in the somatosensory experiment at 98 ms after onset

of the median nerve stimulation

Approach

FO SOC LOC

Scm Smax Scm Smax Scm Smax

MNE 5.0 13.5 11.4 6.9 11.7 6.9
Noise-normalized MNE 9.5 11.2 8.7 7.5 8.7 13.5
MCE 6.9 6.9 5.7 5.7 5.7 5.7

FO, free orientation; SOC, strict orientation constraint; LOC, loose orientation constraint; MNE, minimum-norm estimate; MCE, minimum-
current estimate.

� Lin et al. �

� 12 �



model the MEG source is different from the distributed source
modeling, such as MNE or MCE; thus, comparison based on
ECD can avoid some common confounds in the distributed
source modeling techniques. The reason to choose center of the
mass of MNE/MCE inverse is to assess the localization results
in a consistent and stable way. Previously, we used a similar
strategy to assess the impact of functional MRI (fMRI) priors on
the MNE [Liu et al., 1998]. In distributed source modeling, the
spatial distribution is subjectively thresholded to illustrate the
spatial distribution of current strength (in MNE and MCE) or
the spatial distribution of statistical significance of brain acti-
vation (in noise-normalized MNE). There is no direct relation-
ship between the center of mass in the distributed source
modeling techniques and ECD fitting.

The other benefit of loose cortical orientation constraint in
MNE is that it generates a less diffuse source estimate. This
is because LOC allows a small source component tangential
to the cortical surface to account for the MEG/EEG mea-
surement. Although not as focal as MCE, MNE with LOC
can potentially help the interpretation of localization results
by reducing false spread of the source estimates to adjacent
gyri or sulci, which in our experience were typical findings
when applying a strict cortical orientation constraint.

We applied the proposed cortical constraints only on
MEG data. Due to the similarity of the formulation of the
source localization and physiological nature for signal gen-
esis, such cortical constraints are expected to provide similar
benefits in EEG localization in distributed source modeling.

In our approach, the source space has been generated by
decimating the dense triangulation of the cortical surface with-
out taking into account the spacing of undecimated vertices or
the local curvature variations on the cortex. Using the patch
statistics, it is in principle possible to refine the decimation in
areas of high curvature, thus decreasing the variation of corti-
cal normals within the patches. However, even with this even-
tual improvement in the selection of source locations, the LOC
remains useful to alleviate problems arising from misalign-
ment of the MEG and MRI coordinate frames when cortex
normal information is employed in source analysis.

In conclusion, the LOC restricts the orientations of the
sources to be approximately aligned with the cortical surface
normal in each cortical source space location. This new ap-
proach reduces the problems apparent with a strict orientation
constraint, which are due partly to the variation of the cortical
normal direction within each cortical patch represented by the
corresponding source space point and partly caused by mis-
alignment of the MEG and MRI coordinate frames. We have
demonstrated the utility of this novel approach in the compu-
tation of both �2 and �1 minimum-norm current estimates.

ACKNOWLEDGMENTS

We appreciate the comments from Drs. S.P. Ahlfors and
N. Ille on the manuscript.

REFERENCES

Bertsekas DP (2000): Dynamic programming and optimal control.
Belmont, MA: Athena Scientific.

Cohen D (1968): Magnetoencephalography: evidence of magnetic
fields produced by alpha-rhythm currents. Science 161:784–786.

Dale A, Sereno M (1993): Improved localization of cortical activity
by combining EEG and MEG with MRI cortical surface recon-
struction: a linear approach. J Cogn Neurosci 5:162–176.

Dale AM, Fischl B, Sereno MI (1999): Cortical surface-based analysis. I.
Segmentation and surface reconstruction. Neuroimage 9:179–194.

Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD,
Halgren E (2000): Dynamic statistical parametric mapping: com-
bining fMRI and MEG for high-resolution imaging of cortical
activity. Neuron 26:55–67.

Fischl B, Liu A, Dale AM (2001): Automated manifold surgery: con-
structing geometrically accurate and topologically correct models
of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80.

Fischl B, Sereno MI, Dale AM (1999): Cortical surface-based analy-
sis. II: Inflation, flattening, and a surface-based coordinate sys-
tem. Neuroimage 9:195–207.

Fuchs M, Wagner M, Kohler T, Wischmann HA (1999): Linear and
nonlinear current density reconstructions. J Clin Neurophysiol
16:267–295.
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Uutela K, Hämäläinen M, Salmelin R (1998): Global optimization in
the localization of neuromagnetic sources. IEEE Trans Biomed
Eng 45:716–723.
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